

The role of LSD spikes in safeguarding nuclear reprocessing plants R Wellum, Y Aregbe, A Verbruggen, S Richter

Institute for Reference Materials and Measurements (IRMM) Geel, Belgium

> http://www.irmm.jrc.be http://www.jrc.ec.europa.eu

Introduction

- 1. Background
- 2. Historical progress
- 3. Present status
- 4. Problems and future development

Basic considerations

LSD spikes are classical spikes used for measuring the isotope amount content of U and Pu in mainly spent nuclear fuel solutions by isotope dilution mass-spectrometry (IDMS)

Special features –

mg size of the spikes so that the dissolver solution does not need dilution before spiking

²³⁹Pu and ²³⁵U are the spikes used at present: the isotopes measured in the sample are ²⁴⁰Pu and ²³⁸U

The ²³⁵U is diluted to 20% with a certified ^{nat}U material

To measure the amount of U and Pu total concentration, separate measurements of the isotopic ratios relative to the ²⁴⁰Pu and the ²³⁸U

Why these two spike isotopes?

• Availability

²³⁹Pu is available as a certified metal at > 95% enrichment

²³⁵U and ^{nat}U are available for purchase as high purity certified metals

Other isotopes do not provide advantages or are not available easily as certified gram-sized quantities

Historical development

- IRMM (De Bièvre) was one of the first institutes to propagate the use of LSD spikes – support program to the IAEA (1980)
- The first spikes proposed were metals an 20% isotopic enriched uranium and a Pu/Gd/Nd alloy

Metals had advantages in handling and in the chemistry after adding the sample (reduction) but they needed specialist knowledge to make to a high standard, were difficult to prove homogeneity (Pu) and –especially for the Pu alloy – needed additional certification

Production halted at IRMM around 2000

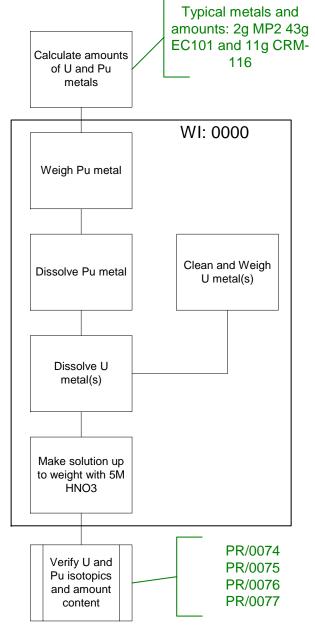
LSD spikes at IRMM

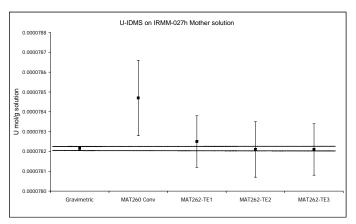
- These are prepared by dissolving a primary ²³⁹Pu metal (e.g. CETAMA MP2) and an enriched ²³⁵U metal plus a natural U metal to form the needed 20% enrichment
- The materials are dissolved in ca. 3 kg 3M HNO₃ to form a homogeneous solution, ca. 0.6 mg/g ²³⁹Pu and 18 mg/g U (≡ 3.7 mg/g ²³⁵U)
- After drying in 2.5g batches at low temperature, a solution of cellulose acetate butyrate is added to each vial and dried down on the spike to keep it in place during storage and transport

Spike amounts

- Uranium (20% enriched) = 18.5 mg/g solution
 - ²³⁵U = 3.6 mg/g solution = 11 mg per spike ampoule
- Pu (> 95% enriched ²³⁹Pu) = 0.6 mg/g solution
 - ²³⁹Pu = 1.5 mg per spike ampoule

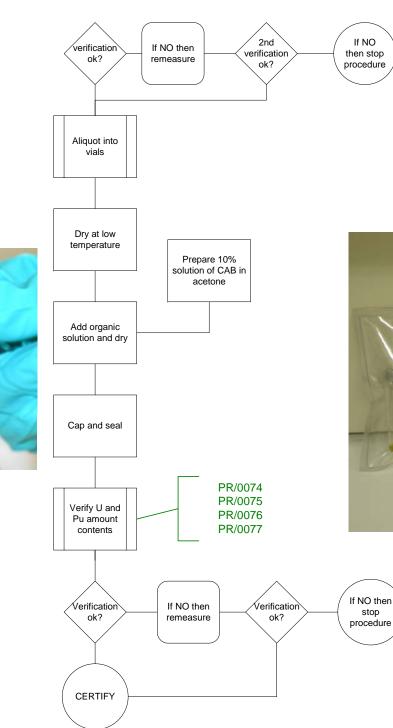
Joint Research Centre

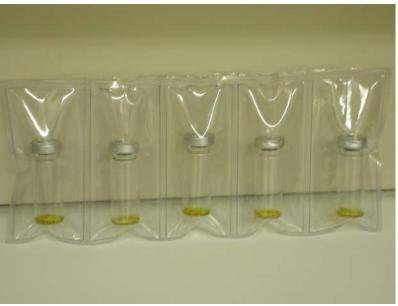

Transport and stability


- The dried nitrates are not stable over time and tend to flake off. For this reason the first batches of the LSD spikes (1027a → 1027e) were covered with tetrahydrofuran, which was dried down onto the spike.
- This covering was very stable, but not always easy to dissolve under commercial conditions.
 A substitute material – cellulose acetate butyrate was chosen and is used at present

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

LSD spike process





Verification

Solution is verified for isotope content :

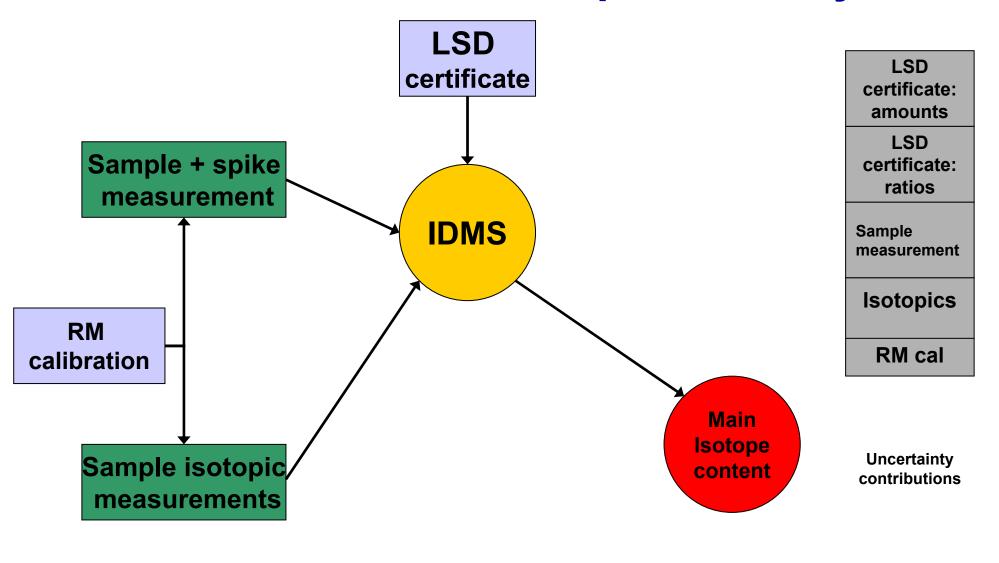
6 independent samples, spiked with e.g. IRMM-046b (²³³U + ²⁴²Pu)and separately checked for isotopic ratios: ²³⁸Pu/²³⁹Pu, ²⁴⁰Pu/²³⁹Pu, ²⁴¹Pu/²³⁹Pu, ²⁴²Pu/²³⁹Pu; ²³⁴U/²³⁸U, ²³⁵U/²³⁸U, ²³⁶U/²³⁸U

After ampouling, a randomly selected set across the sequence are taken and again the isotope contents are measured after spiking with IRMM-046b

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

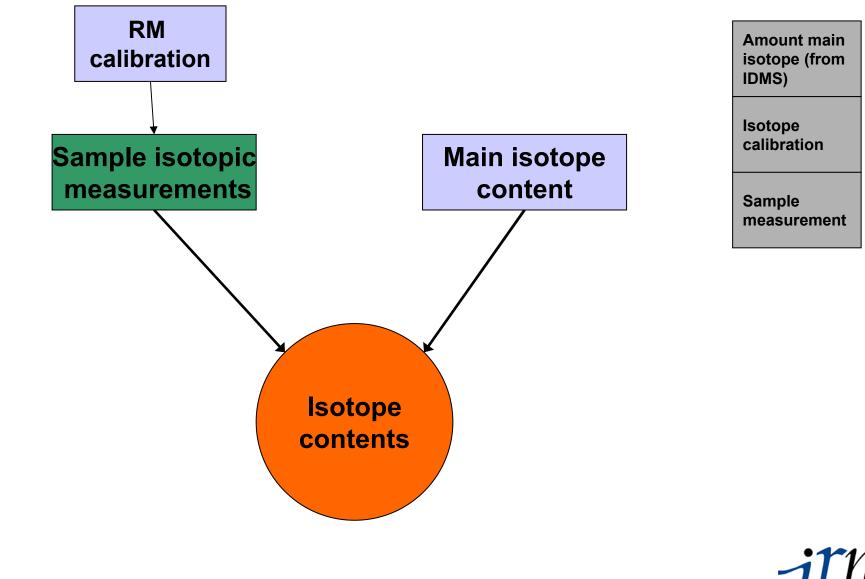
m

The isotope concentrations in the final LSD spike are derived from:


- a) The weights of metals dissolved and weight of final solution
- b) The certified purities of the metals
- c) The certified isotopic content of the metals

This allows the direct measurement of U and Pu content in a sample by IDMS in a single traceability step

Isotope Dilution Mass-spectrometry


 i_m^{rm}

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

17

Isotope Dilution Mass-spectrometry

irm M

Isotope dilution with LSD spike

Each measurement is built on a foundation of a reference material = the LSD spike

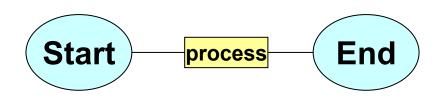
Do we need repeated measurements?

Not needed

- One well-controlled measurement is sufficient in principle
- Extra measurements bring little improvement to the uncertainty
- Measurements must be under QM and <u>transparent</u>

19

Needed


- Extra measurements increase the trust
 - Mistakes / blunders
 - Deceit (!)

Do we need LSD spikes with very low uncertainties?

- Yes when values of the isotope contents with the lowest measured uncertainties are required
- Yes when the results are being compared with measured or calculated results done elsewhere on the same sample
- No when a difference between internal samples or input/output of a process are is made

Use of one spike for comparison measurements

Taking a spiked sample and measuring subsamples always gives results that agree well.

Why?

- Sample problems are eliminated
- A large part of the measured uncertainty coming from the spike is present in each measurement. Large degree of correlation, therefore lower apparent scatter

Practical problems: future development

The development of LSD spikes is still on-going

- Deposition methods and stability
- Different ratios U/Pu (MOX fuel)
- Alternative starting materials linked to more flexible application setups

Deposition methods

- Present method is not fool-proof (< 100% yield)
 - Different types of vials?
 - At least partially metals used? 20% U metal
 - Different covering / higher temperature treatment / addition of other inert materials?
 - Use of robot deposition can increase throughput and increase reliability

Joint Research Centre

U/Pu ratio

- The present U/Pu ratio (25:1) is a compromise
 - A lower ratio is maybe required for MOX fuels
 - Ratio is always defined by the ability to measure by mass-spectrometry
 - Separate spikes for U and Pu possible, but:
 - An excess of uranium seems to stabilize the Pu deposit: more work needs to be done on this

Alternative sources of materials

- Use of primary metals for U and Pu is justified for essential applications of the spikes
 - Limited supply in medium/long-term
- Spikes made from U/Pu mixtures (e.g. starting as oxides) need to be certified against reference materials
 - Consequence is slightly higher uncertainties
 - Easier to obtain materials

